Skip to main content

5G Beyond and 6G Communication Technologies

While initial 5G communication standards have been released and 5G networks have been implemented in some cities around the world, some research groups at world-leading universities and tech-giant companies have already started conducting research on the sixth-generation (6G) communication networks.



Although 6G standards are expected to be available in around 2030, there are some speculations what could be included and supported in 6G networks. The major expected technologies or techniques in 6G: 

  1. Of course, 6G will support all available technologies in 5G such as  machine-to-machine communication, massive internet of things (massive IoT), enhanced mobile broadband (eMBB),  Ultra-Reliable and Low Latency Communications (URLLC), Flexible network operations.
  2. Enhanced network operations which are supported by machine learning applications to improve data-rate, energy-efficiency and flexibility.
  3. It will also support vehicles and drones to  enable intelligent transportation systems.
  4. Virtual reality applications, which require huge data-rate and low latency, will also be supported.
  5. It is also expected to support embedded radar sensing technologies to provide enhanced infrastructure for vehicular networks.
Related to 6G, a recent article on radar-communication technologies in 6G systems has been published by our research group:

There would be more technologies and applications which will be included in 6G. This is an introduction post, therefore, more details and explanations about 6G will be presented soon.

Comments

Popular posts from this blog

Electromagnetic Modelling and Antenna Simulation via Opensource Software

Commercial electromagnetic simulation (EM) software packages such as CST Microwave Studio and  ANSYS HFSS are widely used in commercial applications and educational purposes. Based on my experience, they provide very accurate results which match measurements in most antenna works. On the other hand, there are also very solid opensource software and applications which may also provide similar results in some applications. Antennas are also used in radio telescopes While commercial EM software suits usually have very good documentations, easy-to-use interference, and result visualisation and navigation tools, opensource EM software suits might consist of only the solver and documentation which explains how it should be used and implemented for design and simulation via an interference and a programming language such as Python, MATLAB, C++ . As they are opensource, it is also possible to edit their codes and advance their functions and performance. Thus, these features makes opensource

Most Popular and Best Video Games in 2021

The video game industry is one of the biggest virtual industries in the world. Almost half of the world's population is regularly playing games to relieve the stress in their lives. As a result, the importance of the gaming industry is increasing every passing year. Thus, we wanted to compile the most popular video games in 2021 for you! Do not miss your chance to check out the following games to give them a try. These games have been chosen by our editor and we are sure that you will enjoy playing them. Computer games are played by everyone ! These are the best video games in 2021 according to our game editor, please keep reading for the details of each game. Call of Duty: Modern Warfare FIFA 2021 Fortnite New World Apex Legends Top 5 - Most Popular Video Games in 2021 Here are the top 5 most popular video games that managed to be highly popular in 2021. We bet you have played some of these amazing games before! 1. Call of Duty: Modern Warfare Call of Duty is one of the most popul

On the performance of Matlab and Parallel Computing

MATLAB is one of the most powerful scientific computing tools along with Python. Although Python is my favorite scientific programming language since it is opensource, well-documented and has plenty of libraries, I sometimes use MATLAB especially while dealing with very large matrices as MATLAB is highly optimized for large-scale matrix operations, consequently, it performs better at processing very large matrices. From a parallel computing perspective, MATLAB actually strives to utilize all available CPU cores in a parallel way to maximize its performance and reduce the computation time when it is possible. Therefore, it does a kind of parallel computing when it is possible such as in matrix operations as these operations are very suitable to be run parallelly.  However, the parallel operation of the MATLAB might be restricted by bad coding practice of the users especially using for or while loops, because those loops are generally performed in a serial manner with an increasi